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Abstract This paper is concerned with regularization of shock solutions of nonlinear hyperbolic equations, i.e.,
introduction of a smoothing term with a coefficient ε, then taking the limit ε → 0. In addition to the classical use
of regularization for eliminating physically meaningless solutions which always occur in non-regularized equa-
tions (e.g. waves of depression in gas dynamics), we show that it is also helpful for stability analysis. The general
approach is illustrated by applying it to rimming flows, i.e., flows of a thin film of viscous liquid on the inside of a
horizontal rotating cylinder, with or without surface tension (which plays the role of the regularizing effect). In the
latter case, the spectrum of available linear eigenmodes appears to be continuous, but in the former, it is discrete and,
most importantly, remains discrete in the limit of infinitesimally weak surface tension. The regularized (discrete)
spectrum is fully determined by the point where the velocity of small perturbations vanishes, with the rest of the
domain, including the shock region, being unimportant.

Keywords Liquid films · Rimming flows · Shocks · Stability · Surface tension

1 Introduction

It is well-known that nonlinear hyperbolic PDEs (partial differential equations) admit shock solutions, i.e., solu-
tions with discontinuities. The simplest such PDE describes unidirectional propagation of waves in a gas or shallow
channel filled with liquid,

∂h

∂t
+ h

∂h

∂x
= 0, (1)

where h is the nondimensional density of the gas or depth of the liquid, and x , t are the nondimensional coordinate
and time. We shall seek steadily translating solutions, i.e.,

h = H(ξ), ξ = x − vt, (2)

E. S. Benilov · S. B. G. O’Brien (B)
Department of Mathematics, University of Limerick, Limerick, Ireland
e-mail: stephen.obrien@ul.ie

M. S. Benilov
Department of Physics, University of Madeira, Funchal, Portugal

123



198 E. S. Benilov et al.

where v is the translation speed. Substitution of (2) into Eq. 1 yields dH/dξ = 0, and shock solutions result from
the assumption that H is a piecewise constant function, e.g.

H(ξ) =
{

H− if ξ < 0,

H+ if ξ > 0,
(3)

where H+ and H− are the amplitudes of the solution before and after the shock. Clearly, Eq. 1 is inapplicable at
the point of discontinuity and, thus, provides no information regarding its dynamics. Instead, one usually resorts
to ‘physically justified’ shock conditions—such as, for example, the Rankine–Hugoniot condition (e.g. [1, p. 24]),
according to which the translation velocity is

v = 1

2
(H− + H+) . (4)

Observe that solution (2)–(4) formally exists for both H− < H+ and H− > H+ (i.e., for waves of depression and
compression, respectively). It can be shown, however, that waves of depression do not satisfy the so-called causality
principle (e.g. [1, p. 56]), which implies that they are meaningless physically.1

The causality principle has also connections with stability of shock solutions. Solutions that satisfy it are stable,
while the stability properties of those that do not are unclear, as the corresponding linearized problem is ill-posed
(see [1, p. 324]). Still, even though the causality principle produces sensible results for both existence and stability of
shock solutions, such an ‘axiomatic’ tool seems to be more relevant to basic physical theories rather than solutions
of PDEs. One would expect to deal with the latter through mathematical, not physical means.

There is another application where shock solutions play an important role, namely, thin films (e.g. [3,4]) and, in
particular, rimming flows [5–10]—i.e., flows of a thin film of viscous liquid on the inside of a horizontal rotating
cylinder (see Fig. 1). The governing equation in this case is (see [11])

∂h

∂t
+ ∂

∂θ

(
h − 1

3
h3 cos θ

)
= 0, (5)

where h is the nondimensional thickness of the film, θ and t are the polar angle and nondimensional time. Equation 5
admits two types of shock solutions, with stationary shocks located in the first and fourth quadrants. The former type
does not satisfy the causality principle and, thus, is physically meaningless [5,6], while a linear stability analysis of
the latter yields a continuous spectrum of stable eigenmodes (solutions with exponential dependence on time) [7].
In addition to the discontinuity associated with the shock, higher derivatives of these eigenmodes may be singular at
θ = 0, and the requirement that they be regular reduces the continuous spectrum to a countable set [9]. It is unclear,
however, why one should disregard seemingly legitimate eigenmodes, merely because their nth derivatives (with n
being as large as one wants) misbehave at a single point.

The aim of the present work is two-fold. Firstly, we develop a tool for dealing with stability of shock solutions;
secondly, we re-examine the rimming-flow problem and clarify the discrepancy between [7] and [9]. Both aims will
be achieved through regularization [12,13], i.e., introduction of a smoothing term in the PDE in question. For Eq. 1,
this will be a second-derivative term describing modelling viscous effects; and for (5), a combination of second,
third, and fourth derivatives, modelling surface tension. Denoting the coefficients of the smoothing terms in each
case by ε, we take the limit ε → 0 and show that it yields solutions that automatically satisfy the causality prin-
ciple (those that do not simply do not exist in the regularized equation). The same approach clarifies the stability
properties of rimming flows: no matter how weak surface tension is, it discriminates between the results of [7]
and [9].

This paper has the following structure. In Sect. 2, we illustrate the approach outlined above by regularizing Eq. 1.
In Sect. 3, we examine the existence of shock solutions of the regularized version of Eq. 5 (governing rimming flows
with surface tension); and in Sect. 4, we examine their stability.

1 This conclusion can also be derived from the Lax entropy condition [2], which is an alternative means of eliminating physically
meaningless solutions of nonlinear hyperbolic equations.
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Fig. 1 Liquid film in a
rotating horizontal cylinder
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2 Regularization of Eq. 1

Introducing in (1) a second-derivative term (which, physically, describes viscosity), we obtain Burgers’ equation,

∂h

∂t
+ h

∂h

∂x
− ε

∂2h

∂x2 = 0, (6)

which is very well studied [12–15] and, thus, provides a perfect testbed for our approach.

2.1 Steadily translating solutions

Steadily translating shock solutions of Burgers’ equation (6) were examined, as a particular case, in [12,13], and
we shall not discuss them in detail. We shall only mention that substitution of (2) in (6) yields

d

dξ

(
−vH + 1

2
H2 − ε

dH

dξ

)
= 0.

Solving this ODE with the assumption that H is bounded as ξ → ±∞, we obtain

H = v − a tanh

(
aξ

2ε

)
, (7)

where a is an arbitrary constant. It can be readily shown that, as ε → 0, (7) tends to solution (2)–(3) with

H+ = v − |a|, H− = v + |a|. (8)

Thus, only those solutions of the original equation (1) that have H− ≥ H+ follow from the ε → 0 limit of the
regularized equation (6). Furthermore, relationship (4) between H± and the translation velocity v automatically
follows from (8), i.e., regularization also justifies the Rankine–Hugoniot condition.

2.2 Stability

The stability properties of the solution (7) will be illustrated for the particular case of a stationary (v = 0) shock
with a = 1,

H = − tanh
( x

2ε

)
. (9)
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Let

h = H + h̃, (10)

where h̃ is a small perturbation. Substituting (10) in (6) and linearizing it, we obtain

∂ h̃

∂t
+ H

∂ h̃

∂x
+ h̃

∂ H

∂x
− ε

∂2h̃

∂x2 = 0. (11)

Now, recall that the Hopf–Cole transformation [14,15],

h = −2ε
∂

∂x
log u,

reduces Burgers’ equation to the heat equation,

∂u

∂t
− ε

∂2u

∂x2 = 0. (12)

In particular, H(x) given by (9) corresponds to the solution u = U (x, t) of (12) with

U = 2 cosh
( x

2ε

)
exp

(
t

4ε

)
.

It is natural to expect, and can be verified by inspection, that the linearized Hopf–Cole transformation

h̃ = −2ε
∂

∂x

(
ũ

U

)
, (13)

reduces the linearized Burgers equation (11) to the linearized version of (12). The latter is already linear, so we just
replace u with ũ in it to obtain

∂ ũ

∂t
− ε

∂2ũ

∂x2 = 0. (14)

Now, apply transformation (13) to the following solution of (14):

ũ = − 1

4ε2k
exp

[(
k + 1

2ε

)
x + ε

(
k + 1

2ε

)2

t

]
, (15)

where k is an arbitrary complex constant. The resulting solution of the linearized Burgers equation is

h̃ =
[

1

2
exp

( x

2ε

)
sec

( x

2ε

)
+ 1

4εk
sec2

( x

2ε

)]
exp

[(
εk2 + k

)
t + kx

]
. (16)

To guarantee that h̃ is bounded as x → ±∞, one requires

−1

ε
≤ Re k ≤ 0.

Similarly, one can obtain

h̃ =
[
−1

2
exp

(
− x

2ε

)
sec

( x

2ε

)
+ 1

4εk
sec2

( x

2ε

)]
exp

[(
εk2 + k

)
t − kx

]
, (17)

with the same restriction on k. Most importantly, both solutions decay as t → +∞, which corresponds to asymptotic
stability.

Observe also that (15) represents the general form of a solution with exponential dependence on time (eigenmode)
of Eq. 14, on the basis of which one can show that (16)–(17) include all exponential solutions of the linearized
Burgers equation. Thus, regularized shocks are asymptotically stable with respect to all existing eigenmodes.

In order to interpret solutions (16)–(17) physically, observe that, say, for (16),

lim
ε→0

h̃ =
{

0 for x < 0,

ek(x+t) for x ≥ 0,

where Re k ≤ 0. This solution describes a disturbance coming from +∞ and being absorbed by the shock.
Similarly, solution (17) describes a disturbance coming from −∞ and, again, being absorbed by the shock. In
both cases perturbations are absorbed completely; hence, the regions on opposite sides of the shock are, in a sense,
disconnected, as no information can pass through the shock (this issue will be revisited in Sect. 4).

Thus, the regularized and non-regularized problems each admit a continuous spectrum of stable eigenmodes.
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3 Existence of shocks in rimming flows

3.1 Flows without surface tension

For steady rimming flows, h = H(θ), Eq. 5 yields

H − 1

3
H3 cos θ = q, (18)

where the constant of integration q represents the non-dimensional flux due to entrainment of the liquid by the
cylinder’s rotation. This cubic equation was examined in [11], where it was demonstrated that, if q < 2

3 , Eq. 18
has a smooth unique solution; see Fig. 2a. For q = 2

3 , h(θ) has a ‘corner’ at θ = 0; see Fig. 2b. Thus, there exists a
family of steady rimming flows characterized by different values of the flux q ≤ 2

3 .
Instead of q, however, it is more physical to characterize the solution by the non-dimensional net mass M , i.e.,

to solve (18) with an additional constraint,∫ 2π

0
H dθ = M. (19)
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Fig. 2 Rimming flows with continuous profile. The left-hand panels show the solution in Cartesian coordinates (the solid/dashed line
corresponds to the smaller/larger root of (18), the first and fourth quadrants are shaded). The right-hand panels show the solution in
polar coordinates. (a) q = 0.6, (b) q = 2

3
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Fig. 3 Rimming flows with shocks. As in Fig. 2, the left-hand panels show the solution in Cartesian coordinates, the right-hand panels
show the solution in polar coordinates. (a) The shock is located at θ = 5

3 π (in the fourth quadrant). (b) The shock is located at θ = 1
3 π

(in the first quadrant)

The flux, in this case, should be treated as a function of the mass, q(M). In particular, the limiting solution with
q = 2

3 corresponds to M∗ ≈ 4.44 (as computed via numerical integration of H(θ); see, for example, [6]).
Next, imagine that the actual mass of the liquid inside the cylinder exceeds the threshold value M∗. In this case,

the film is no longer thin enough for viscous entrainment to ‘overcome’ gravity, and liquid parcels cannot climb
past the point θ = 0, where the tangent to the cylinder’s surface is vertical and gravity is, thus, the strongest. These
parcels accumulate on the rising side of the cylinder, where the film becomes so thick that the liquid starts falling
back and forms a shock, similar to that of a tidal bore [5,6]. Note that the shock’s position is determined by M , i.e.,
to accommodate a larger amount of liquid, the shock will be located closer to the bottom of the cylinder, and vice
versa.

In order to understand the mathematical nature of the shock solutions, note that, in the first and fourth quadrants,
Eq. 18 has two positive roots, with the smaller of the two corresponding to continuous solutions (see the left-hand
panels of Fig. 2). For q = 2

3 , the two roots touch at θ = 0 and allow for a continuous transition from the smaller root
to the larger one (see the left-hand panels of Fig. 3). Observe that, as θ → 1

2π, 3
2π , the larger root becomes infinite;

hence, the solution must ‘jump’ back to the smaller root before this occurs. As a result, solutions with shocks in the
first and fourth quadrants are both possible; see Figs. 3a, b, respectively.

However, only the latter type is supported by the above intuitive argument based on liquid parcels. Furthermore,
the former type does not satisfy the causality principle (see [5,6]) and, thus, is meaningless physically.
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Existence and stability of regularized shocks 203

Finally, it can be shown that the net mass of shock solutions can never exceed a certain threshold value, M∗∗ ≈
6.93; thus, initial conditions with M > M∗∗ appear to have no steady state to evolve to. We shall not discuss what
happens in such cases in this paper, but mention only that they have been examined in [8,10].

3.2 Rimming flows with surface tension

The simplest way to regularize Eq. 5 is to take into account surface tension,2 which yields (e.g. [5,8,17])

∂h

∂t
+ ∂

∂θ

(
h − 1

3
h3 cos θ

)
+ ∂

∂θ

[
1

3
εh3

(
∂h

∂θ
+ ∂3h

∂θ3

)]
= 0, (20)

where ε is a nondimensional parameter characterizing surface tension (for physical background of Eq. 20, see
Appendix A). Note also that, in many applications, ε is small.

For steady solutions, h = H(θ), (20) yields

H − 1

3
H3 cos θ + 1

3
εH3

(
dH

dθ
+ d3 H

dθ3

)
= q, (21)

where q is the nondimensional flux. This equation is to be solved with the periodicity condition,

H(θ + 2π) = H(θ). (22)

The boundary-value problem (21)–(22) cannot be solved analytically, so we shall analyze it asymptotically for
ε � 1.

First of all, recall that, for ε = 0 (no surface tension), all shock solutions correspond to q = 2
3 ; hence, for small

ε, we can safely assume q ≈ 2
3 (this assumption will be confirmed numerically later).

Observe also that, except for the shock region, surface tension can be neglected, and the solution is close to the
one shown in Fig. 3.

To find the structure of the shock region, let it be located near θs . Rewriting (21) in terms of the ‘inner’ spatial
variable3

x = ε−1/3 (θ − θs), (23)

replacing q with its leading-order value q = 2
3 , and omitting small terms, we obtain

H − 1

3
H3 cos θs + 1

3
H3 d3 H

dx3 = 2

3
. (24)

To match the inner solution with the outer one, the following matching conditions must be imposed:

H → H± as x → ±∞, (25)

where H± are the two positive roots of the cubic equation

H± − 1

3
H3± cos θs = 2

3
. (26)

Most importantly, if θs is in the first quadrant, then H− > H+ (see Fig. 3b); and, if θs is in the fourth quadrant, then
H− < H+ (see Fig. 3a).

2 Alternatively, (5) can be regularized by giving up the lubrication approximation in the vicinity of the shock, similar to the way the
solution with a ‘corner’ (shown in Fig. 2b) was treated in [16]. We shall not discuss this matter in detail, but note only that, physically,
such an approach should be used when the effect of gravity is stronger than that of surface tension.
3 The following scaling for θ has been suggested earlier in [6,8].
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Next, we shall prove that the boundary-value problem (24)–(26 ) does not have a solution for H− > H+. Multiply
(24) by

1

H3

dH

dx
,

and integrate it with respect to x from −∞ to +∞. Integrating by parts and taking into account (25), we obtain

ε

3

∫ ∞

−∞

(
d2 H

dx2

)2

dx = 1

H2+

(
H+ + 1

3
H3+ cos θs − 1

3

)
− 1

H2−

(
H− + 1

3
H3− cos θs − 1

3

)
. (27)

Using (26), one can show that

r.h.s. of (27) = (H+ − H−) (1 − H+ H− cos θs)

2H− H+
and

H+ H− = 1

cos θs
− (H+ − H−)2

3
.

Accordingly, (27) becomes

ε

3

∫ ∞

−∞

(
d2 H

dx2

)2

dx = (H+ − H−)3 cos θs

6H− H+
.

If H− > H+, the right- and left-hand sides of this equality are of opposite signs, which means that the boundary-value
problem (24)–(26) has no solution in this case.

Thus, if the outer solution (described by the non-regularized equation) involves a shock in the first quadrant, the
inner solution cannot be matched across the shock. We conclude that the regularized problem as a whole has no
solutions with shocks in the first quadrant, and we do not have to resort to the causality principle to show that they
are physically meaningless.

Unfortunately, the inner problem (24)–(26) does not have an obvious analytical solution and, thus, the structure
of regularized shocks cannot be described analytically. Of course, Eqs. 24–26 can be solved numerically, but so can
the exact problem, Eqs. 21, 22, and that is what we now do, using a numerical method developed in [10].

Firstly, solutions with a (regularized) shock occurring in the first quadrant have never arisen in our computations.
Secondly, we examined the relationship between the net mass M and the flux q; see Fig. 4. One can see, that the
leading-order prediction that, for M � 4.44, q ≈ 2

3 is a good approximation. Thirdly, we examine the dependence
of the solution on ε (Fig. 5). Observe that surface tension generates a ‘dimple’ on the left-hand side of the shock
and a ‘hump’ on its right-hand side. Interestingly, neither the depth of the dimple, nor the height of the hump tend
to zero as ε → 0, which can be interpreted as a kind of Gibbs phenomenon.

4 Stability of shocks in rimming flows

4.1 Flows without surface tension

To examine the steady state H(θ) for stability (see [7]), let h = H + h̃, where h̃ is a small perturbation. Then, after
linearization, the (non-regularized) Eq. 5 yields

∂ h̃

∂t
+ ∂

∂θ

(
ch̃

)
= 0, (28)

where

c(θ) = 1 − H2 cos θ (29)
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Fig. 4 The flux q vs. the
net mass M , for ε = 10−3.
The upper panel shows a
blow-up of the region
shaded in the lower panel
(the dotted line corresponds
to q = 2

3 )
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Fig. 5 Numerical solutions of Eq. 21. (a) ε = 10−4; (b) ε = 10−5, 10−6, 10−7 [smaller values of ε correspond to larger maxima of
H(θ)]. Panel (b) shows only the shock region, corresponding to the shaded area of panel (a). In all cases, the net mass of the solution
is M = 5.2

is the local velocity of perturbations. We shall seek eigenmodes, i.e., solutions of the form

h̃(θ, t) = φ(θ) est ,

for which (28) becomes

sφ + d

dθ
(cφ) = 0. (30)

The general solution of this equation is

φ = 1

c(θ)
exp

[
−s

∫
dθ

c(θ)

]
. (31)
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In what follows, we shall need the behavior of c(θ) at small θ . Equation 18 with q = 2
3 yields three possible

asymptotic solutions: one should choose the one that is positive and decays with growing θ (as it is the one that
corresponds to the shock solution),

H(θ) = 1 − 1√
6
θ + O(θ2) as θ → 0 (32)

(this formula was originally obtained in [11] with a minor error, which was later corrected in [18]). Substituting
(32) in (29), one can see that

c(θ) =
√

2

3
θ + O(θ2) as θ → 0. (33)

Since c vanishes at θ = 0, the integral in (31) diverges, and it is unclear how the eigenfunction should be extended
across this point.

Physically, however, this issue is unimportant. Indeed, since perturbations have zero velocity at θ = 0, they
cannot pass through this point, nor can they pass through the shock. Thus, there are two ‘disconnected’ regions,
(0, θs) and (θs, 2π), where the eigenfunction can be determined independently. Accordingly, the antiderivative can
be assumed to satisfy∫

dθ

c(θ)
→

√
3

2
log θ + A± + O(θ) as θ → ±0, (34)

with two independent complex constants A− and A+. Equations (31), (33)–(34) fully determine the eigenfunction
φ(θ).

Next, it follows from (31), (33)–(34) that

φ = −
√

3

2
θ

−
√

3
2 s−1eA± + O

(
θ

−
√

3
2 s

)
as θ → ±0. (35)

Following [7], we require φ to be continuous as θ → 0, hence,

Re s < −
√

2

3
.

Since the real part of s is negative, all eigenmodes decay as t → ∞; hence, the steady state is stable.
Observe, however, that if

−2

√
2

3
< Re s < −

√
2

3
.

Equation 35 shows that dφ/dθ and all further derivatives become infinite as θ → 0. An obvious way to ‘weaken’
the singularity is to make Re s smaller, say,

−3

√
2

3
< Re s < −2

√
2

3
.

In this case, dφ/dθ becomes finite, but d2φ/dθ2 and further derivatives are still infinite. In fact, to eliminate
singularities in all derivatives, one has to choose, as suggested in [9],

s = −n

√
2

3
, (36)

where n is a non-negative integer, and also assume

A+ = A−. (37)

An example of an eigenfunction satisfying (36)–(37) is shown in Fig. 6. One can see that φ is smooth at θ = 0 (but
still discontinuous at θ = θs).

We emphasize that the causality principle, or any other physical argument, cannot justify conditions (36)–(37).
It turns out, however, that regularization by surface tension does just that.
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Fig. 6 A solution of the leading-order stability problem. (a)
The eigenfunction determined by (31), (33)–(34), (36)–(37) with
n = 1, and (b) the corresponding steady-state solution (the shock
is located at θs = 5

3 π )
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Fig. 7 The eigenvalues of problem (38)–(39) for the steady
state with M = 5.2. (a) ε = 10−4, (b) ε = 10−5, (c) ε = 10−6,
(d) ε = 10−7. The dotted line shows eigenvalues (36)

4.2 Rimming flows with surface tension

With surface tension included, Eq. 30 becomes

sφ + d

dθ

[
cφ + εH2φ

(
dH

dθ
+ d3 H

dθ3

)
+ 1

3
εH3

(
dφ

dθ
+ d3φ

dθ3

)]
= 0, (38)

where the steady state H(θ) satisfies (21) and c(θ) is defined by (29). Equation 38 is to be solved with the periodicity
condition

φ(θ + 2π) = φ(θ). (39)

Equations (38)–(39) turn out to have a solution for discrete values of s, which will be referred to as the eigenvalue,
with φ(θ) being the eigenfunction. This result comes as no surprise, as regular problems with periodic boundary
conditions normally have discrete spectra. This, however, does not prove that the spectrum of the non-regularized
problem is also discrete. Indeed, as ε → 0, the distance between neighboring eigenvalues of the latter problem may
tend to zero, and the limiting spectrum may be continuous.

Since problem (38)–(39) is real, the eigenvalues occur in complex conjugate pairs. Note also that there always
exists a zero eigenvalue s = 0, corresponding to an infinitesimal change of the flux q (or, equivalently, the mass
M). Indeed, differentiating (21) with respect to q, one can see that the resulting equation is equivalent to (38) with

s = 0, φ = ∂ H

∂q
.

To find other eigenvalues, problem (38)–(39) was solved numerically using the method described in Appendix B.
Typical results are shown in Fig. 7: one can see that, as ε → 0, the eigenvalues tend to (36), i.e., to those predicted
in [9].

To interpret this result physically, recall that, for Burgers’ equation, regularization of the shock leaves the spectrum
of eigenmodes exactly as it was, i.e., continuous. Therefore, the shock is unlikely to be responsible for the emergence
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of the discrete spectrum in the rimming-flow problem. The only possible reason, in fact, is the regularization of the
region near θ = 0, where the leading-order solution has a singularity as well.

Thus, we need to analyze the eigenvalue problem (38)–(39) for small θ . To do so, replace H and c with their
small-θ expansions (32)–(33), and replace q with its leading-order value, q ≈ 2

3 . Then, in terms of an appropriate
inner variable,

x = ε−1/4θ,

Eq. 38 becomes (small terms omitted)

d

dx

(
1

3

d3φ

dx3 + 2x√
6
φ

)
+ sφ = 0. (40)

In order to set proper boundary conditions for this equation, we need to examine behavior of φ as x → ±∞. It can
be verified by inspection that one of the four linearly independent solutions of (40) behaves algebraically,

φ → x−
√

3
2 s−1 as x → ±∞.

This solution matches the behavior of the outer solution [see (35)], and φ should certainly ‘include’ it.
The other three linearly independent solutions behave exponentially, and their large-distance asymptotics can

be found using a WKB-type expansion (see Appendix C). It turns out that two out of the three solutions grow as
x → ±∞ and, thus, should be discarded, with the remaining one being

φ → x
1+ 1√

6
s

exp
(
−37/62−11/6x4/3

)
as x → ±∞. (41)

This linearly independent solution should also be included in φ, i.e., the full boundary condition for (40) is

φ → B±x−
√

3
2 s−1 + D±x

1+ 1√
6

s
exp

(
−37/62−11/6x4/3

)
as x → ±∞, (42)

where B± and D± are undetermined constants. Observe that, due to the linearity of the problem, one of the constants
can be equated to unity; hence, we have only three degrees of freedom for a fourth-order equation. As a result, (40),
(42) have a solution only for special values of s, which makes s an eigenvalue.

Problem (40), (42) has been solved numerically by ‘shooting’, and the numerical eigenvalues agreed with (36)
to an extremely high accuracy. Furthermore, B+ and B− turned out to be equal; hence, the matching of (42) to the
outer solution (35 ) makes the corresponding constants in the latter, A+ and A−, equal as well. Thus, the regularized
problem justifies assumption (37).

Note that, even though the ‘local’ equation (40) does not seem to have analytical solutions in the general case, if
s assumes one of the values (36), it miraculously does! For n = 0, 1, 2, 3, for example, one can verify by inspection
that the solution is simply

φ = Bxn, (43)

where B is an arbitrary constant. Then, for n = 4, 5, 6, 7,

φ = B

[
xn + n!

4
√

6 (n − 4)! xn−4
]
, (44)

and, for n = 8, 9, 10, 11,

φ = B

[
xn + n!

4
√

6 (n − 4)! xn−4 + n!
192 (n − 8)! xn−8

]
, (45)

etc. As expected, in all these cases the boundary condition (42) is satisfied with B− = B+.
We emphasize that the above analytical solutions may not necessarily constitute the full spectrum (as, in princi-

ple, there can be other eigenvalues), which is why we needed to solve the problem numerically. Equations 43–45
should rather be viewed as a confirmation of the numerical results.
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Finally, note that the limiting spectrum is independent of how exactly the equation for rimming flows is
regularized. To illustrate this, we used a model suggested in [11],

∂h

∂t
+ ∂

∂θ

(
h − 1

3
h3 cos θ

)
− ε

∂2h

∂θ2 = 0 (46)

(which can be obtained by replacing in (20) the fourth-order (surface-tension) term with a second-order term). The
steady states of (46) have been examined for stability and, as expected, the corresponding limiting (as ε → 0)
spectrum turned out to be exactly as (36). Indeed, analogous to (40), the small-θ equation in this case is

d

dx

(
−dφ

dx
+ 2x√

6
φ

)
+ sφ = 0.

Then, it can be readily verified that, even though the eigenfunctions of this equation differ slightly from (43)–(45),
the corresponding eigenvalues are exactly the same as those of the (‘properly’ regularized) Eq. 40.

Furthermore, one can verify that smoothing by any even-ordered derivative would yield the same set of eigen-
values. One only has to make sure that the sign of the smoothing term corresponds to diffusion, not ‘anti-diffusion’.
Odd-ordered derivatives, on the other hand, are unlikely to be suitable for regularization, as they often give rise to
oscillations.

5 Concluding remarks

Thus, we have examined the existence and stability of shock solutions of nonlinear hyperbolic PDEs and their
connection to regularization (i.e., introduction of a smoothing term with a small coefficient ε, then taking the limit
ε → 0). As expected, regularization filters out physically meaningless solutions, such as waves of depression in
gas dynamics, and, in this respect, is equivalent to the causality principle.

In addition, regularization delivers important results that cannot be obtained using the causality principle.
Firstly, some hyperbolic PDEs have singularities associated with points where the local velocity of small per-

turbations vanishes, and it is unclear how these singularities affect the spectrum of linear eigenmodes. If, however,
a smoothing term is inserted in the equation, the singularity disappears and the structure of the spectrum becomes
clear. Eventually, one can take the limit of infinitesimally weak smoothing—and, thus, find out what happens in the
original (non-smoothed) problem.

Secondly, even though the limiting results are independent of the specific form of the smoothing term, one
should always use regularization by a physically relevant effect. This way, not only will the properties of the original
solutions be clarified, but one will also find out how they are affected by a physically important
influence.

Neither of the above results can be obtained using the causality principle.
The approach described has been applied to linear stability of rimming flows with shocks. It has been shown that

the spectrum of the regularized (by surface tension) stability problem is discrete and fully determined by the point
of zero velocity of small perturbations, whereas the rest of the domain, including the shock region, has no influence
on the eigenvalues.

Finally, note that our analysis of the stability of rimming flows did not take into account the effect of inertia
(associated with the material derivatives in the Navier–Stokes equations). Given that inertia has been shown to
destabilize smooth rimming flows [17], it may destabilize shock solutions as well; this question requires further
study.
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Appendix A: Physical background of Eq. 20

First of all, the variables h, θ , and t are related to their dimensional analogues (labelled with subscripts dim) by

h = hdim

αR
, θ = θdim, t = 	tdim, (47)

where

α =
(

ν	

gR

)1/2

, (48)

and g, ν, R, and 	 are the acceleration due to gravity, the liquid’s kinematic viscosity, the cylinder’s radius and
angular velocity. The coefficient ε, in turn, is

ε = σ

ρgR2

(
ν	

gR

)1/2

,

where ρ and σ are the liquid’s density and surface tension.
Equation 20 can be derived from the Stokes set using the standard lubrication approach (e.g. [5,8,17]), which

assumes that the film is thin and its slope is small, i.e.,

hdim � R,
∂hdim

∂θdim
� 1.

In terms of the nondimensional variables (47), these conditions amount to

αh � 1, α
∂h

∂θ
� 1. (49)

These conditions are most restrictive near the shock, where the film’s thickness is largest and its slope, steepest.
Accordingly, using the inner scaling (23) to estimate

h = O(1),
∂h

∂θ
= O(ε−1/3),

∂2h

∂θ2 = O(ε−2/3), · · · , (50)

one can reduce conditions (49) to a single inequality,

α � ε1/3. (51)

(51) can be rewritten in terms of the volume fraction F , i.e., the ratio of the volume occupied by the liquid to that
of the whole cylinder. Estimating

F ∼ hdim

R
= αh, (52)

and recalling that, for shock solutions, h = O(1), one can see that ( 51)–(52) imply

F � ε1/3.

This restriction is slightly more stringent than the usual lubrication assumption F � 1.

Appendix B: Numerical solution of (38)–(39)

The eigenvalue problem (38)–(39) was treated using two different methods.
As the simplest approach, (38)–(39) were discretized (using second-order approximations of the derivatives on

a mesh with a variable step), and its eigenvalues were computed using the LAPACK subroutine DGEEV (designed
for finding the eigenvalues of large symmetric matrices; see [20]). It turned out, however, that this method works
reasonably well only for ε � 10−5.
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For smaller values of ε, we had to look for each eigenvalue individually, using the so-called relaxation (Newton
linearization); see [19, Sect. 17.3]. Accordingly, (38)–(39) were replaced with

snφn + (sn+1 − sn) φn + sn (φn+1 − φn)

+ d

dθ

[
cφn + εH2φn

(
dH

dθ
+ d3 H

dθ3

)
+ 1

3
εH3

(
dφn

dθ
+ d3φn

dθ3

)]
= 0, (53)

φn+1(θ + 2π) = φn+1(θ), (54)

where (sn, φn) represent the ‘current’ iteration and (sn+1, φn+1), the next one. Equation 53 was discretized using
suitable second-order approximations of the derivatives on a mesh with a variable step (with smaller steps in
the shock region). Then problem (53)–(54) was solved for (sn+1, φn+1) using the LAPACK subroutine DGESV
(designed for solving large sets of linear non-homogeneous equations; see [20]).

Appendix C: Far-field asymptotics for Eq. 40

Let

φ = exp

(∫
S dx

)
, (55)

where S(θ) is a new unknown. Substitution of (55) in (40) yields

d3S

dx3 + 3

(
dS

dx

)2

+ 4S
d2S

dx2 + 6S2 dS

dx
+ S4 + √

6 (x S + 1) + 3s = 0. (56)

Consider the limit x → ∞ and seek a solution in the form

S = S0 + S1 + · · · . (57)

To leading order, (56) yields

S4
0 + √

6x S0 = 0,

which admits three solutions

S0 = −
(√

6x
)1/3

,

(
1

2
+

√
3i

2

) (√
6x

)1/3
,

(
1

2
−

√
3i

2

)(√
6x

)1/3
.

φ must be bounded as x → ±∞, which is the case only for

S0 = −
(√

6x
)1/3

. (58)

In the next-to-leading order, (56) yields

6S2
0

dS0

dx
+ 4S3

0 S1 + √
6x S1 + √

6 + 3s = 0,

the solution of which is

S1 =
(

1 + s√
6

)
1

x
. (59)

Substituting (57)–(59) in (55) and carrying out integration, we obtain

φ → exp

[
−61/63

4
x4/3 +

(
1 + s√

6

)
log x

]
as x → ±∞,

which is equivalent to (41).
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